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Abstract

We present an arbitrary Lagrangian–Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics
(MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct
phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic induction equation is
discretized using a compatible mixed finite element method with a second order accurate implicit time differencing scheme
which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat
terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting
materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are
preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is
corrected with a relaxation of the mesh, followed by a second order monotonic remap of the electromagnetic state vari-
ables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity.
The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured
hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence-free nature of the mag-
netic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the mag-
netic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction
(AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the
discretization via a set of numerical experiments.
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1. Introduction

We are interested in the simulation of magnetohydrodynamic events and electromechanical devices in three
dimensions. Our primary goal is a numerical method that solves, in a self-consistent manner, the equations of
electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and nonlinear mechan-
ics (motion, elastic–plastic deformation, and mechanical contact). Example applications for these simulations
include magnetic flux compression generators, metal forming, and electromagnetic launchers. In this paper, we
focus on the numerical discretization of the resistive electromagnetic induction equation in an arbitrary
Lagrangian–Eulerian (ALE) fashion [1] for the purposes of computing ~J �~B forces and ~J �~E resistive energy
losses for coupling to hydrodynamic and thermal calculations in an operator-split fashion. All computational
results were obtained by incorporating ALE electromagnetics into a well-known ALE hydrodynamic code,
ALE3D, which has been successfully used in a wide variety of computational physics applications including
[2–8] In this paper, the discretization of the hydrodynamics is not discussed in detail.

The term magnetohydrodynamics (MHD) is used as a descriptor for a great variety of disparate phenomena.
We are particularly interested in the simulation of pulse power devices that involve metal and air regions, and
which are driven by known voltage or current sources. For example, explosively driven magnetic flux compres-
sion generators are devices that use explosives to amplify current, and can generate large current pulses with a
much faster dI/dt than a capacitor bank. Another application is industrial metal forming, where a current is
injected into a metal sheet and the resulting~J �~B forces accelerate the metal sheet into a mold. A third appli-
cation is rail-guns; these are essentially linear electric motors in which~J �~B forces accelerate the armature to
very high velocities (several kilometers/second) useful for equation-of-state research. In these applications the
metal regions undergo a significant plastic deformation, and in some situations the metal may transition to
liquid. Our goal is accurate simulation of the evolving geometry of the metal, as well as accurate computation
of electric currents, magnetic fields, temperatures, pressures, etc. Based on these applications of interest, we
choose an existing arbitrary Lagrangian–Eulerian (ALE) hydrodynamics simulation code as our starting
point. We acknowledge that ALE methods are not optimal for studying MHD turbulence such as occurs
in magnetic fusion energy or astrophysical applications, but this is not our intended application.

In multi-physics ALE hydrodynamic codes, an operator-split method is typically employed where separate
physics packages are run sequentially and update their variables in the Lagrangian frame. When the Lagrange
motion of the mesh causes significant mesh distortion, that distortion is corrected with an equipotential relax-
ation of the mesh, followed by a second order monotonic remap of field quantities. This remap is equivalent to
advection of field quantities through the mesh with a fictitious effective velocity determined by the amount of
mesh relaxation. In our proposed ALE formulation of MHD, we will employ an operator-split method with
three distinct steps:

� Electromagnetic diffusion – Solve the equations of electromagnetic diffusion in the Lagrangian frame at one
discrete time step for fixed materials.
� Lagrangian motion – Move mesh nodes according to ~J �~B forces assuming a d~B

dt ¼ 0 ‘‘frozen-in-flux’’
condition.
� Eulerian advection – Only required if mesh is relaxed, advect (or transport) magnetic state variables to new

mesh while preserving the divergence-free nature of the magnetic flux density.

While much progress has been made in obtaining numerical algorithms for coupled advection/diffusion of
magnetic fields [9,10], there are several key obstacles to be overcome for a fully three-dimensional ALE finite
element implementation on general unstructured hexahedral grids. One issue is the need to numerically pre-
serve the divergence-free constraint of the magnetic flux density, ~B [11]. Failure to reproduce this fundamental
physical property in any numerical discretization can lead to the non-physical acceleration of conducting
materials due to the presence of fictitious magnetic charge. Methods for maintaining a divergence-free velocity
field for incompressible flow, such as Lagrange multiplier constraints, penalty methods, elliptic projection
(divergence cleaning), and relaxation-based elliptic projection (divergence damping), can in principle be
applied to magnetic fields. However, more efficient and elegant approaches are based on the fact that
~r �~B ¼ 0 is not arbitrary, but is in fact a consequence of Ampere’s law. If Ampere’s law is discretized in a
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particular manner, then ~r �~B ¼ 0 is satisfied exactly without any additional effort, and this is the basis of con-
strained transport methods [12–14]. Our proposed algebraic constrained transport discussed in Section 5.1 is a
generalization of constrained transport for unstructured ALE simulations.

For our applications, an additional issue is the need to reproduce MHD shock fronts without introducing
spurious oscillations in the magnetic field. Various flux limiters have been advocated for fluid dynamics, with
the goal of limiting non-physical oscillations without introducing excessive artificial diffusion. These flux lim-
iters can in principle be applied to magnetic fields, but care must be taken to not destroy the above mentioned
divergence constraints. Some proposed methods and comparisons of various approaches can be found in [15–
18,13,19–21]. Our proposed algebraic flux correction discussed in Section 5.4 limits an intermediate edge-based
voltage in a manner that enforces a local extremum diminishing property on the magnetic flux. This algebraic
flux correction is an intermediate step in the algebraic constrained transport algorithm and hence ~r �~B ¼ 0 is
still satisfied exactly.

In this paper we review magnetic diffusion in the Lagrangian frame of a deforming region, and we argue
that a mixed finite element method employing H(Curl) and H(Div) basis functions [22] is ideally suited for dis-
cretization of this partial differential equation. The algebraic constrained transport method and algebraic flux
limiter are built upon the same topological curl operator that is used in the discrete diffusion equation. Com-
putational experiments are performed to confirm the second order convergence of the method for smooth
fields, and to quantify the ability to conserve energy and preserve discontinuities for strongly shocked
problems.
2. Electromagnetic diffusion

As is typically the case for MHD, we solve Maxwell’s equations under the so-called ‘‘good conductor’’
approximation and under this condition it is reasonable to neglect the displacement current, resulting in elec-
tromagnetic diffusion instead of wave propagation. The first step in our three part ALE formulation is to solve
the equations of electromagnetic diffusion. We begin with a discussion of the relevant equations without mate-
rial motion, then we discuss electromagnetic diffusion in moving materials.
2.1. Conductors at rest

We assume a charge-free three-dimensional domain X with a surface boundary C and an outwardly directed
surface normal direction n̂. The domain X consists of a set of materials, each specified by the values of the
electromagnetic material properties r and l, the electrical conductivity and the magnetic permeability respec-
tively. For our applications, we wish to drive an MHD simulation by a combination of known voltage and/or
current sources. As such, we introduce a special source term to the Maxwell equations under the good con-
ductor approximation. We therefore consider the following equations for a set of materials at rest:
~r � r~r/ ¼ 0 ð1Þ

r~Eind ¼ ~r� 1

l
~Bþ r~r/ ð2Þ

o~B
ot
¼ �~r�~Eind ð3Þ
The divergence-free conduction current due to a scalar potential (or voltage) / is first computed via (1), then
added as a source term to Ampere’s law (2), where we have introduced the term ~Eind to denote the induced
electric field. Finally, Faraday’s law (3) is solved to obtain the time varying magnetic flux density ~B given
the induced electric field ~Eind. It is common to eliminate either E or B from the above equations to yield a sin-
gle equations involving the Curl–Curl operator, but we will not take that approach here. In instead, as in [23],
we maintain two coupled first order equations, as this is beneficial for the advection step as discussed in
Section 5 below.
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2.2. Conductors in motion

We now consider electromagnetic diffusion in moving materials. We first consider the Eulerian case in
which the material positions and field components are defined with respect to the fixed laboratory coordinate
system. Let~x ¼ fx1; x2; x3g 2 E denote the label of a point in Euclidean space E where the motion takes place.
The coordinate system of E is called the spatial or laboratory system. Let each point in the material be labeled
with ~X ¼ fX 1;X 2;X 3g 2M. The coordinate system of M is the material system. We assume there exists a time
dependent, bijective mapping which relates these two different labels of the same point,
~x ¼~xð~X ; tÞ; ~X ¼ ~X ð~x; tÞ ð4Þ
While not necessary, it is common to have these two coordinate systems be equal at time t = 0, the unde-
formed state. Let a vector field defined with respect to the laboratory frame be denoted with a prime, e.g.
F 0(x, t), and the same vector field defined with respect to the material frame be unprimed, e.g. F(X, t). In an
Eulerian representation, the fields and operators of a partial differential equation (PDE) are functions of
the fixed laboratory frame; in a Lagrangian representation the fields and operators of a PDE are functions
of the moving material frame.

Faraday’s law can be written in integral form as
d

dt

Z
CðtÞ

~B0 � da0 ¼ �
I

oCðtÞ
~E0 � dl0
where the surface C(t) is moving with the material. The material derivative d~F 0

dt of any flux-type quantity ~F is
defined as
d

dt

Z
CðtÞ

~F 0 � da0 ¼
Z

CðtÞ

d~F 0

dt
� da0
and, as shown in [24,25], a careful derivation gives
d~F 0

dt
¼ o~F 0

ot
� ~r0 �~v0 �~F 0 þ~v0ðr0 �~F 0Þ ð5Þ
where the velocity of a material point ~X on the surface of integration is~v0 ¼ d~x=dt. Combining (5) with (2), (3)
yields the induction equation
o~B0

ot
¼ �~r0 � 1

r
~r0 � 1

l
~B0 þ ~r0 �~v�~B0 ð6Þ
2.3. Operator splitting

The first term on the right of (6) is magnetic diffusion while the second term is magnetic advection; the ratio
of these is the magnetic Reynolds number MRe ¼ vL

k where L is the characteristic size and k � 1
rl is the magnetic

diffusivity. For problems in which MRe � 1 and the velocity is such that advection and diffusion have opposite
signs, we have near equilibrium o~B0

ot � 0 and time integration of the induction equation requires special care.
However, for advection or diffusion dominated problems it is acceptable to employ an operator splitting of
the equation. Let the induction equation be represented as
o~B
ot
¼ Lrð~BÞ þ Lvð~BÞ
where the operator Lr denotes electromagnetic diffusion and the operator Lv denotes magnetic advection and
consider the two separate equations
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o~Br

ot
¼ Lrð~BrÞ

o~Bv

ot
¼ Lvð~BvÞ
Let Sr denote the electromagnetic diffusion time integration operator that takes the field ~Br from a discrete
time step n to time step n + 1, and let Sv denote the magnetic advection time integration operator that takes
~Bv from a discrete time step n to time n + 1. The generic operator splitting of the induction equation is then
given by the composition
~Bnþ1 ¼ ½Sr � Sv	~Bn
For this simple operator splitting the time accuracy is O(Dt), but numerous alternatives exist that are O(Dt2) or
better. The advantage of operator splitting is that different time integration can be used for Sr and Sv. Our
approach for the induction equation is to perform diffusion in the Lagrangian system using implicit time inte-
gration, followed by updating the momentum equation in the Lagrangian system explicitly, followed by an
optional mesh relaxation and advection step if the mesh becomes too distorted.

2.4. Material frame

If ~A is a vector in the material coordinate system M and ~a is the same vector in the laboratory system E,
then the components of these vectors are related by
ai ¼ oxi

oX j Aj
However, electromagnetic fields and fluxes do not simply transform as vectors. As shown in [24,25], voltage
and flux are invariants with respect to the deformation transformation
MaterialðLagrangianÞ LaboratoryðEulerianÞ
~E � d~x ¼ ð~E0 þ~v0 �~B0Þ � d~x0
~B � d~a ¼ ~B0 � d~a0

ð7Þ
Differential arc length and surface area elements transform according to
d~x ¼ J Td~x0 ð8Þ
d~a ¼ jJ jJ�1d~a0 ð9Þ
where our definition of the Jacobian matrix is Jij = oXj/oxi. As a consequence, the electric field intensities and
magnetic flux densities transform in a dual manner in order to maintain the invariance property of (7)
~E ¼ J�1ð~E0 þ~v0 �~B0Þ ð10Þ

~B ¼ 1

jJ j J
T~B0 ð11Þ
In the material system the induction equation becomes
o~B
ot
¼ �r� 1

r
r� 1

l
~B ð12Þ
where it is understood that the Curl operator is with respect to the material coordinate system. Thus the form
of the diffusion equation is invariant to material motion when the fields and operators are defined in the mate-
rial frame. For the special case of a perfectly conducting material this equation gives o~B

ot ¼ 0, the frozen-in-flux
theorem. The operator splitting of the induction equation is particularly simple in the material frame: the first
step is diffusion of the fields, the second step is to move the mesh nodes according to the resulting~J �~B force
while maintaining d~B

dt ¼ 0 during the mesh motion. When a mixed H(Curl)–H(Div) discretization is used for the
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equations, this latter step means that the magnetic degrees-of-freedom, which represent the net fluxes through
each face of the mesh, are constant.

3. Discretization of electromagnetic diffusion equations in the Lagrangian frame

3.1. Mixed variational formulation and time discretization

The first step in applying a mixed finite element method is to cast the relevant PDEs into variational form.
Our particular mixed variational formulation is derived from a combination of methods originally presented
in [23,26]. Our goal is to obtain a numerical formulation where the primary discrete field is the magnetic flux
density as found in the ~B field formulation of [23] and where the discrete time integration is performed using a
generalized Crank–Nicholson method as found in the ~A–/ potential formulation of [26]. The advantage of the
~B formulation of [23] becomes apparent during the advection phase of the ALE formulation, as magnetic flux
is the best electromagnetic quantity to use for magnetic transport [27]. The advantages of the ~A–/ potential
formulation of [26] are that it can be up to second order accurate in time, and voltage sources can be explicitly
added to a problem by specifying them as essential boundary conditions on the additional elliptic PDE, mak-
ing this method well suited for coupling to an external RLC circuit model.

We begin by multiplying Ampere’s law of (2) by a test function ~W 1 2 HðCurlÞ and integrate over the three-
dimensional problem domain X to obtain the variational form
Z

X
r~Eind � ~W 1 ¼

Z
X

~r� 1

l
~B � ~W 1 þ

Z
X

r~r/ � ~W 1 ð13Þ
Now we perform integration by parts on (13) and apply the Gauss divergence theorem to obtain
Z
X

r~Eind � ~W 1 ¼ �
Z

X

1

l
~B � ~r� ~W 1 þ

Z
X

r~r/ � ~W 1 þ
I

C
n̂� 1

l
~B � ~W 1 ð14Þ
The resulting surface integral term has units of electrical current and will become important when we discuss
boundary conditions; but for the sake of clarity, we will omit this term for the remaining derivation. Now we
assume that the fields ~E, ~B and / are known at discrete time intervals denoted by the subscript integer n. At
time n + 1 we now have the following:
Z

X
r~Eind

nþ1 � ~W 1 ¼ �
Z

X

1

l
~Bnþ1 � ~r� ~W 1 þ

Z
X

r~r/nþ1 � ~W 1 ð15Þ
We apply a generalized trapezoidal approximation for the time derivative of the magnetic field such that
~Bnþ1 ¼ ~Bn þ ð1� aÞDt
o~B
ot

�����
n

þ aDt
o~B
ot

�����
nþ1

ð16Þ
The averaging parameter a determines the nature of the numerical time integration such that
a ¼
0 Explicit; First Order Accurate Forward Euler

1=2 Implicit; Second Order Accurate Crank Nicolson

1 Implicit; First Order Accurate Backward Euler

8><>:

Applying this discretization to Faraday’s law (3), we obtain
~Bnþ1 ¼ ~Bn � Dt~r� ðð1� aÞ~Eind
n þ a~Eind

nþ1Þ ð17Þ
Now we substitute ~Bnþ1 on the right hand side of (15) with the expression from (17) and move all quantities at
time step n to the right hand side to obtain
Z

X
r~Eind

nþ1 � ~W 1 þ aDt
1

l
~r�~Eind

nþ1 � ~r� ~W 1

� �
¼
Z

X

1

l
~Bn � ~r� ~W 1 � ð1� aÞDt~r�~Eind

n � ~r� ~W 1

� �
þ
Z

X
r~r/nþ1 � ~W 1 ð18Þ
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We now introduce the time averaged variable, e~B, defined as
e~Bn � ~Bn � ð1� aÞDt~r�~Eind
n ð19Þ
Next, we rewrite (18) in terms of our new time averaged variable e~B to obtain
Z
X

r~Eind
nþ1 � ~W 1 þ aDt

1

l
~r�~Eind

nþ1 � ~r� ~W 1

� �
¼
Z

X

1

l
e~Bn � ~r� ~W 1 þ

Z
X

r~r/nþ1 � ~W 1 ð20Þ
Note that the variational formulation of (20) is incomplete due to the presence of the /n+1 term on the right
hand side. In order to fully define the problem, we must add an additional variational equation to define the
scalar potential. To do this, we multiply (1) by a scalar test function W0 2 H(Grad) and integrate over the do-
main X
Z

X
ð~r � r~r/nþ1ÞW 0 dX ¼ 0
and employ Green’s first scalar identity to obtain
Z
X

r~r/nþ1 � ~rW 0 dX ¼
I

C
n̂ � r~r/nþ1W 0 dC ð21Þ
for all test functions W0.

3.2. Boundary conditions

The natural and essential boundary conditions for (20) are
Natural n̂� 1

l
~B ¼ 0

Essential n̂�~Eind ¼ 0

ð22Þ
These are sometimes referred to as the Neumann and Dirichlet boundary conditions, respectively. Recall that
the essential boundary condition is a constraint that is enforced manually, whereas the natural boundary con-
dition is automatically satisfied in the variational (weak) sense. In general, the inhomogeneous versions of
these two boundary conditions require vector valued functions ~gNðCÞ and ~gDðCÞ such that
n̂� 1

l
~B ¼~gN on CN

n̂�~E ¼~gD on CD
The natural and essential boundary conditions for (21) are
Natural n̂ � r~r/ ¼ 0

Essential / ¼ 0
ð23Þ
In other words, the normal component of the conduction current density r~r/ is the natural boundary con-
dition while the surface scalar potential (or voltage) / is the essential boundary condition. In general, the inho-
mogeneous versions of these two boundary conditions require scalar valued functions gN(C) and gD(C) such
that
n̂ � r~r/ ¼ gN on CN

/ ¼ gD on CD
3.3. Curl and divergence conforming basis functions

We assume the three-dimensional domain X has been partitioned into a set of discrete hexahedral elements
Ri, the union of which forms the finite element mesh Xh. Furthermore, we assume the surface boundary C has
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been partitioned into the sets CN and CD, denoting surfaces to which either a Natural or Essential boundary
condition is applied.

We will discretize the variational form of the electromagnetic diffusion equations of (20) and (21) using a
mixed finite element method. In the context of Galerkin approximations of saddle-point variational problems,
the choice of the finite element space plays a crucial role in the stability and convergence of the discretization.
For the case of Maxwell’s equations, mixed finite element methods which use H(Curl) and H(Div) conforming
spaces to model the electric field intensities and magnetic flux densities respectively are preferred over tradi-
tional nodal vector spaces H0(X)3. In simple terms, nodal basis functions enforce too much continuity, leading
to spurious, non-physical solutions. The H(Curl) and H(Div) basis functions can be considered the finite
element equivalent of so-called compatible finite difference and finite volume discretization methods that also
utilize edge and face based degrees-of-freedom [28].

The salient features of the H(Curl) and H(Div) basis functions on a hexahedral element are as follows. We
will denote the space of H(Curl) basis functions as W1 and H(Div) basis functions as W2. The functional form
of the H(Curl) basis functions on the reference hexahedral element 0 < (x,y,z) < 1 are
x-directed y-directed z-directed
~W 1

1 ¼ ð1� yÞð1� zÞ ~W 1
5 ¼ ð1� xÞð1� zÞ ~W 1

9 ¼ ð1� xÞð1� yÞ
~W 1

2 ¼ yð1� zÞ ~W 1
6 ¼ xð1� zÞ ~W 1

10 ¼ xð1� yÞ
~W 1

3 ¼ ð1� yÞz ~W 1
7 ¼ ð1� xÞz ~W 1

11 ¼ ð1� xÞy
~W 1

4 ¼ yz ~W 1
8 ¼ xz ~W 1

12 ¼ xy

ð24Þ
Within an element, an H(Curl)-conforming field ~F 1ðx; y; zÞ will be approximated by the basis function
expansion
~F 1
hðx; y; zÞ ¼

X12

i¼1

fi
~W 1

i ðx; y; zÞ ð25Þ
where the degrees-of-freedom fi are given by
fi ¼
Z
~F 1 � t̂i dl ð26Þ
where t̂i is the unit tangent to edge i, i.e. the degrees-of-freedom are associated with the edges of the element.
This is due to the fact that

R
~W 1

j � t̂i dl ¼ dij, the basis functions ‘‘interpolate on edges’’. Clearly, across adjacent
mesh elements the tangential component of ~F 1

h is continuous across the shared face (a requirement for
~F 1

h 2 HðCurlÞ) whereas the normal component is discontinuous. These basis functions are well suited for elec-
tric fields, as electric fields have a jump discontinuity in normal component across material interfaces, and as
shown in Section 3.2 electromagnetic boundary conditions involve only the tangential component of the elec-
tric field on the bounding surface.

The functional form of the H(Div) basis functions on the reference hexahedral element are
x-directed y-directed z-directed
~W 2

1 ¼ ð1� xÞ ~W 2
3 ¼ ð1� yÞ ~W 2

5 ¼ ð1� zÞ
~W 2

2 ¼ x ~W 2
4 ¼ y ~W 2

6 ¼ z

ð27Þ
Within an element, an H(Div)-conforming field ~F 2ðx; y; zÞ will be approximated by the basis function
expansion
~F 2
hðx; y; zÞ ¼

X6

i¼1

fi
~W 2

i ðx; y; zÞ ð28Þ
where the degrees-of-freedom fi are given by
~f i ¼
Z

F � n̂i da ð29Þ
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where n̂i is the unit normal to face i, i.e. the degrees-of-freedom are associated with the faces of the element.
This is due to the fact that

R
~W 2

j � n̂i da ¼ dij, the basis functions ‘‘interpolate on faces.’’ Clearly, across adja-
cent mesh elements the normal component of ~F 2

h is continuous across the shared face (a requirement for
~F 2

h 2 HðDivÞ) whereas the tangential component is discontinuous. These basis functions are well suited for flux
density or current density , as flux densities have a jump discontinuity in tangential component across material
interfaces.

Consider the basis function ~W 1
1 in (24). The curl of this function is ~r� ~W 1

1 ¼ ŷð1� yÞ � ẑð1� zÞ. Notice
that this can be written as the combination of ~W 2 basis functions ~W 2

3 � ~W 2
5, and that this combination is diver-

gence free. Now consider the basis function expansions for ~F 1
hðx; y; zÞ and ~F 2

hðx; y; zÞ on a single reference ele-
ment, with the respective degrees-of-freedom being given by vectors e and b of length 12 and 6, respectively.
Given e, we can compute b such that ~F 2

hðx; y; zÞ ¼ r �~F 1
hðx; y; zÞ using the matrix operation
b ¼

0 0 0 0 1 0 �1 0 �1 0 1 0

0 0 0 0 0 1 0 �1 0 �1 0 1

�1 0 1 0 0 0 0 0 1 �1 0 0

0 �1 0 1 0 0 0 0 0 0 1 �1

1 �1 0 0 �1 1 0 0 0 0 0 0

0 0 1 �1 0 0 �1 1 0 0 0 0

2666666664

3777777775
e ð30Þ
The divergence of the resulting field ~F 2
hðx; y; zÞ is given by
r �~F 2
hðx; y; zÞ ¼ �b1 þ b2 � b3 þ b4 � b5 þ b6 ð31Þ
and this is exactly zero, for any given vector e. The matrix in (30) above is an edge-face incidence matrix, with
the signs of the entries determined by the (arbitrary) definition of the directions of the edges and faces of the
element.

This is a specific example of the inclusion condition ~r� ~W 1 
 ~W 2, and this inclusion condition is a com-
ponent of the overarching deRham complex that is satisfied by the basis functions. The H(Curl) and H(Div)
basis functions satisfy a discrete deRham diagram as shown in (32). In this diagram the top row indicates the
continuous fields and the bottom row represents the discrete finite element approximation. The right arrows
represent differentiation, from left to right: gradient, curl, and divergence, respectively. The vertical arrows
represent projection from the continuous field to the discrete. The projection operator is the machinery that
computes the degrees-of-freedom given the continuous field. The bottom row means that the vector identities
~r� ~r/h ¼ 0 and ~r � ~r�~F h ¼ 0 are satisfied exactly, regardless of mesh distortion or mesh resolution h.
Given an arbitrary discrete scalar field /h 2W0, we have ~r/h 2 f~g :~g 2 W 1; ~r�~g ¼ 0g. Likewise, for an
arbitrary discrete vector field ~Eh 2 ~W 1, we have ~r�~Eh 2 f~g :~g 2 ~W 2; ~r �~g ¼ 0g. This allows the divergence
conditions of the fields to be satisfied without any need for Lagrange or penalty constraints. One last point to
be made is that the discrete deRham diagram commutes, and this is important in obtaining mathematical con-
vergence proofs of stability and convergence.
HðGradÞ !~r HðCurlÞ !~r� HðDivÞ !~r� L2

# P0
h # P1

h # P2
h # P3

h

W 0 !~rh ~W 1 !~rh� ~W 2 !~rh� W 3

ð32Þ
The above formulas (24) and (27) for ~W 1 and ~W 2, respectively, are for the reference hexahedral element only.
For a distorted element the basis functions transform in such a manner to maintain the definition of degrees-
of-freedom, and hence maintain the proper continuity (tangential or normal) across elements. The ~W 1 and ~W 2

basis functions transform dual to the edge tangent and face normal vectors, respectively. Note that the matrix
operation (30) representing the discrete curl operator is still valid for a distorted element when the basis func-
tions are defined to transform in this manner. Hence this matrix operation is referred to as a topological deriv-
ative, meaning that the matrix entries depend upon the connectivity of the mesh, but not upon the actual value
of the mesh coordinates. The transformations are shown in Table 1, visual examples of the basis functions and
their transformation properties are shown in Figs. 1 and 2. In this table we also include the basis functions W0



Table 1
Basis function transformation rules

Object AKA Transformation rule Units

W0 Node basis W 0ð~X Þ ¼ W 0ð~xÞ h0

~W 1 Edge basis ~W 1ð~X Þ ¼ J�1~W 1ð~xÞ h�1

~W 2 Face basis ~W 2ð~X Þ ¼ 1
jJ j J

T~W 2ð~xÞ h�2

W3 Cell basis W 3ð~X Þ ¼ 1
jJ j
~W 3ð~xÞ h�3
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and W3, which correspond to scalar nodal and cell-center basis functions, respectively. The transformations in
Table 1 preserve the deRham diagram, with the discrete differential operators on the bottom row of the deR-
ham diagram corresponding topological derivative matrices. Interestingly, and critically, the transformations
for ~W 1 and ~W 2 are the same as that of electric fields and magnetic flux densities in a laboratory frame (vs mate-
rial frame) in (10) and (11). As discussed in Section 2.4, a perfectly conducting material has oB

ot ¼ 0 in the mate-
rial frame, and this condition is trivial to satisfy when using an H(Div) representation for~B, as the condition is
simply to keep the degrees-of-freedom constant during mesh motion.

In our proposed ALE formulation the scalar potential / will be discretized using W0 basis functions, the
electric field will be discretized using W1 basis functions, and the magnetic flux density ~B will be discretized
using W2 basis functions. For a hexahedral element in the Lagrangian frame we have
/ð~X ; tÞ �
X8

i¼1

viðtÞW 0
i ð~X Þ;W 0 2 HðGradÞ ð33Þ

~Eð~X ; tÞ �
X12

i¼1

eiðtÞ~W 1
i ð~X Þ; ~W 1 2 HðCurlÞ ð34Þ

~Bð~X ; tÞ �
X6

i¼1

biðtÞ~W 2
i ð~X Þ; ~W 2 2 HðDivÞ ð35Þ
For the case of (33), the degrees-of-freedom vi(t) are time dependent voltages at element nodes and the basis
functions are unit-less. For the case of (34), the degrees-of-freedom ei(t) are time dependent induced voltages
along element edges and the basis functions have units of inverse distance. Finally, for the case of (35), the
degrees-of-freedom bi(t) are time dependent magnetic fluxes through element faces and the basis functions
have units of inverse area.
3.4. Mixed finite element discretization

We employ the finite element library FEMSTER [29,30,26] for computation of the local ‘‘mass’’, ‘‘stiff-
ness’’, and ‘‘derivative’’ matrices, where c denotes an arbitrary symmetric tensor function of time and space
(for material constitutive relations) and the superscript l = 0,1,2,3 denotes the degree of the form, where form

refers to the type of basis function, i.e. H(Grad) (l = 0), H(Curl) (l = 1), H(Div) (l = 2), or L2 (l = 3). The
matrices can be written generically as
MlðcÞij ¼
Z

X
cW l

i W
l
j dX ð36Þ

SlðcÞij ¼
Z

X
cdW l

i � dW l
j dX ð37Þ

Dlðlþ1ÞðcÞij ¼
Z

X
cdW l

i � W lþ1
j dX ð38Þ
Note that the d operator denotes Gradient, Curl, or Divergence, for l = 0,1,2 respectively. The ‘‘mass’’ matri-
ces M and the ‘‘stiffness’’ matrices S are square and map l-forms to l-forms, the ‘‘derivative’’ matrices D are
rectangular and map l-forms to (l + 1)-forms. It can be shown that



Fig. 1. Vector plot of H(Curl) basis function on reference element (left) and on a distorted element (right). Note how function has a
tangential component along one and only one edge in the element, regardless of element shape.

Fig. 2. Vector plot of H(Div) basis function on reference element (left) and on a distorted element (right). Note how function has a normal
component along one and only one face in the element, regardless of element shape.
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Dlðlþ1Þ ¼Mlþ1Klðlþ1Þ ð39Þ
Sl ¼ ðKlðlþ1ÞÞTMlþ1Klðlþ1Þ ð40Þ
where Kl(l+1) is a ‘‘topological derivative’’ matrix. This matrix is the discretization of the exterior derivative
operator d from differential geometry, dWl = W(l+1). This matrix depends upon the mesh connectivity, but
is independent of the nodal coordinates. It does not involve an integral over the element, and it does not in-
volve any material properties. While seemingly abstract, it is enormously valuable in practice. Given an l-form
quantity X with basis function expansion
X ¼
Xn

i¼1

xiW l
i ; ð41Þ
and an (l + 1)-form quantity Y with basis function expansion
Y ¼
Xn

i¼1

yiW
ðlþ1Þ
i ; ð42Þ
the exterior derivative (Gradient, Curl, Divergence for l = 0,1,2 respectively) is given by
y ¼ Klðlþ1Þx: ð43Þ
It can be shown that
K12K01 ¼ 0 ð44Þ
K23K12 ¼ 0 ð45Þ
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which are the discrete versions of d(dWl) = 0. In terms of standard vector calculus, these matrix relations cor-
respond to the identities ~r� ~rf ¼ 0 and ~r � ~r�~F ¼ 0, respectively. These identities are satisfied in the dis-
crete sense, exactly (to machine precision), for any mesh and any order basis function. While FEMSTER
supports arbitrary order elements, basis functions, and quadratures, only linear basis functions will be
employed here.

Using the matrix notation previously defined, we can now write the fully discrete formulation of the
magnetic induction equation in the Lagrangian frame as
S0vnþ1 ¼ g0 ð46Þ
ðM1ðrÞ þ aDtS1ðl�1ÞÞeind

nþ1 ¼ ðD12ðl�1ÞÞT~bn þD01ðrÞvnþ1 � g1 ð47Þ
bnþ1 ¼ ~bn � aDtK12enþ1 ð48Þ
~bnþ1 ¼ bnþ1 � ð1� aÞDtK12enþ1 ð49Þ
where v is an array consisting of the time dependent voltage degrees-of-freedom from the scalar potential solve
of (33) for every node in the mesh, eind is an array consisting of the time dependent induced voltage degrees-of-
freedom of (34) for every edge in the mesh and b is an array consisting of the time dependent magnetic flux
degrees-of-freedom of (35) for every face in the mesh. The terms g0 and g1 are voltage and current density
source terms respectively, which can be added to drive a problem. Note that the face based array ~b, the discrete
analog of the secondary variable we introduced in (19), is the only state variable required to be known at time
n. This is a critical feature of our discretization; it means the only state variable that needs to be remapped
during our Eulerian advection phase in Section 5 is this face based time averaged flux.

Note that in (47) the rectangular derivative matrices D12(l�1) and D01(r) are discrete versions of the Curl

and Gradient defined with respect to the Lagrangian frame (i.e. they have metric information encoded in them
by virtue of the mass matrix). As such, they will change as the mesh is moved by ~J �~B forces. Furthermore,
the discrete divergence constraints on the fields are given by
ðD01ðrÞÞTe ¼ 0 ð50Þ
K23b ¼ 0 ð51Þ
and from the identities (45) and (44) these constraints are implicitly satisfied for all time, assuming the initial
conditions and the source terms are divergence free.

4. Lagrangian motion

In this section we review methods for coupling the electromagnetic force and heat terms to the equations of
Lagrangian motion. This phase of the calculation can be viewed as the Lagrangian treatment of the advection
operator Lv of the magnetic induction equation. Given an electromagnetic force, we move the mesh nodes
according to this force, keeping the magnetic degrees-of-freedom (face fluxes) constant. The new node loca-
tions affect the basis functions, so while the magnetic degrees-of-freedom are constant the magnetic field is
in fact properly advected. We begin with the general continuum equation of motion derived from Newton’s
second law. In a Lagrangian reference frame, this is given by
q
o

2~u
ot2
¼ ~r � S

$
þ~F ð52Þ
where q is the material mass density, ~u is the displacement vector, S
$

is the Cauchy stress tensor, and ~F is an
independent volumetric body force density. The variational form of (52) is constructed by multiplying by a test
vector ~w and integrating over the entire domain X
o2

ot2

Z
X

q~u �~wdX ¼
Z

X
ð~r � S

$
Þ �~wdXþ

Z
X

~F �~wdX ð53Þ
If the test vector ~w is considered to have units of distance, then each term in the above equation has units of
work; hence this variational method is often referred to as the method of virtual work. For a valid variational
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method, each component of the test vector wi must be a fully continuous function, i.e. wi 2 H(Grad), and the
stress tensor must satisfy certain symmetry conditions. Integration by parts is employed to yield
o2

ot2

Z
X

q~u �~wdX ¼
Z

C
ðS
$
�n̂Þ �~wdC�

Z
X

S
$

: ð~r�~wÞdXþ
Z

X

~F �~wdX ð54Þ
where n̂ is the outward normal of the surface C. The common boundary conditions are the displacement con-
dition ~u ¼~d on C and the traction condition S

$
�n̂ ¼~t on C. It is common practice in ALE hydrocodes to

decompose the stress tensor into a sum of deviatoric and hydrostatic components such that
Sij ¼ sij � Pdij ð55Þ

where P is the hydrostatic pressure defined to be the mean of the principle stresses P ¼ 1

3
Sii, and dij is the Kro-

necker delta. The deviatoric stress components sij are determined by a material’s strength model (if present)
while the hydrostatic components are determined by the material’s equation-of-state (EOS).

4.1. Computation of electromagnetic force

There are multiple options for coupling the electromagnetic force to the elastic equation of motion (52).
The conceptually simplest approach is to compute ~F ¼~J �~B and use this as the body force in (53). As shown
in [24], the ~J �~B body force density is equivalent to the divergence of a Maxwell stress tensor plus a term
involving the divergence of ~B such that
~J �~B ¼ 1

l
~B � ð~r�~BÞ � ~r jBj

2l

� �
¼ ~r � T

$
�~Bð~r �~BÞ
Under the good conductor approximation (i.e. ignoring energy stored in displacement current), the Maxwell
stress tensor (MST) is given by
T ij ¼
1

l
BiBj �

1

2
dijBkBk

� �
ð56Þ
Provided that ~r �~B ¼ 0 (implying no forces due to the presence of magnetic charge), then the~J �~B body force
and the MST approach will yield identical accelerations of a conducting body. It is interesting to point out the
similarities between the Cauchy stress tensor decomposition of (55) and the Maxwell stress tensor of (56). The
MST consists of a deviatoric component 1

l BiBj and a pressure component consisting of the principle Maxwell
stresses 1

2
dijBkBk. For MHD problems, the mean of the principle Maxwell stress terms is equivalent to the mag-

netic pressure 1
2l j~Bj

2. The deviatoric components of the MST can add an effective ‘‘magnetic strength’’ to mate-
rials that might otherwise have no strength. This gives rise to the physical phenomena of shear Alfven waves,
an example of which is given in Section 6. From a discretization standpoint it is very straightforward to imple-
ment the MST approach. We simply evaluate the components of (56) at element quadrature points in the
Lagrangian frame at the discrete time level n + 1 via the face based representation of (35) and add these values
to the corresponding component of the Cauchy stress tensor in the discretization of (54). This is consistent
with the time centering of the hydrodynamic variables in ALE3D, where the Cauchy stress divergence terms
(which are used to compute accelerations) are known at the discrete time step n + 1, since stress rates are inte-
grated at nþ 1

2
.

4.2. Computation of resistive energy loss

Due to the resistive nature of the coupled magnetic induction equations of (2) and (3), the energy stored in
the magnetic fields is subject to dissipation due to Joule heating. To account for this energy loss, we need to
compute a resistive energy loss term and couple this to the internal energy update equation. This can be
accomplished by computing the resistive energy loss density
er ¼~J �~E ¼ r~E �~E ¼ rð~Eind � ~r/Þ � ð~Eind � ~r/Þ ð57Þ

Again, from a discretization standpoint it is very straightforward to implement the resistive energy loss term.
We simply evaluate the term of (57) at element centroids at the discrete time level n + 1 via the edge-based
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representation of (34) and the node based representation of (33) and add these values to existing zonal energies
at time n + 1, which is consistent with the time centering of energy density variables in ALE3D.
5. Eulerian advection

The ALE3D code performs an optional equipotential relaxation of the mesh. This is important for
problems with gross deformation of the mesh, it prevents the mesh from becoming tangled. If relaxation is
performed, fields defined on the ‘‘old’’ mesh must be remapped to the ‘‘new’’ mesh. This remapping is equiv-
alent to Eulerian advection, but with a fictitious mesh velocity~vm. It is interesting to note that it is possible to
implement a pure Eulerian formulation as a Lagrange step followed by a complete remap step in which the
mesh snaps back to its original configuration at every time step. We consider only new grids which are
‘‘nearby’’ in the sense that only small perturbations of the grid are allowed (i.e. the mesh nodes should not
travel farther than one mesh element in any one relaxation step). This is known as the continuous remap
approximation (CRA). This is in contrast to general remapping methods (a.k.a. interpolation methods, see
[31]) whose goal is to remap quantities between two arbitrary grids. Under the CRA, the nodes of the old mesh
are displaced to new locations; the topology (or connectivity) of the mesh does not change. Furthermore we
restrict the relaxation process to interior mesh nodes, keeping all boundary nodes fixed. A key point is that the
divergence of the magnetic flux density should be preserved during the advection process, this is referred to as
constrained transport or constrained interpolation. The definition of the Maxwell stress tensor assumes a zero
divergence field, so if the advection step does not preserve divergence then some additional post processing
(projection, filtering) would be required to prohibit unlimited growth of magnetic monopoles and the resulting
non-physical forces.

5.1. Constrained transport of magnetic flux

We assume the frozen flux condition (the diffusion of the fields has already been computed) and now our
goal is to compute the rate of change of the magnetic flux density due to advective ‘‘transport’’ caused by the
mesh motion. In essence, we are holding the magnetic field ~B fixed in space and letting the mesh relax around
it; this is opposite in sense to advecting a magnetic field across a fixed Eulerian mesh (as is the case with the
original CT method of [12]). The change in magnetic flux density due to mesh relaxation is therefore
o

ot
~B ¼ �~r�~vm �~B ð58Þ
where vm denotes the mesh velocity. It is imperative that this process maintain the solenoidal nature of the ~B
field by satisfying the constraint
~r �~B ¼ 0
Now consider an arbitrarily oriented surface S with differential surface area d~a. We integrate (58) over the
surface S
Z

S

o

ot
~B � d~a ¼ �

Z
S

~r� ð~vm �~BÞ � d~a
Now we apply Stokes’ theorem to obtain
oU
ot
¼ �

I
C
ð~vm �~BÞ � d~x ð59Þ
where U denotes total magnetic flux through the surface S, and C represents the boundary of the surface S

with differential arc length d~x. Eq. (59) states that a voltage in a circuit loop C is induced by a time rate of
change of flux through this loop due to the motion of the mesh across the ‘‘frozen-in’’ ~B field.

Now suppose the surface S, in the presence of a fixed background ~B field, moves arbitrarily (including dis-
tortion, stretching, re-orientation, etc.) in a time Dtm. We can approximate the time derivative for the magnetic
flux using a simple finite difference
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oU
ot
� Unew � Uold

Dtm
where Uold is the flux through the original surface S at time t and Unew is the flux through the surface S at time
t + Dtm. We know from a Taylor series analysis that this simple finite difference will be second order accurate if
oU
ot is known at time t þ 1

2
Dtm. This provides us with a numerical method for computing the new flux
Unew � Uold � Dtm

I
C

~u
Dtm
�~B

� �
� d~x ¼ Uold �

I
C
ð~u�~BÞ � d~x ð60Þ
where ~u ¼ Dtm~vm is the displacement of the surface S. Stated another way, we can approximate the flux
through the new surface by ‘‘measuring’’ the voltage in the closed circuit loop C. This approximation is most
accurate if the location of the loop C is halfway between the old face and the new face. See Fig. 3 for a depic-
tion of this.

5.2. Algebraic constrained transport on 3D unstructured grids

Let~xold denote the positions of the mesh nodes after a Lagrangian time step and let~xnew denote the mesh
nodes after one mesh relaxation step. We define the nodal displacement as
~u �~xnew �~xold ð61Þ

Furthermore, we define an intermediate nodal position~xmid as
~xmid ¼~xold þ 1

2
~u ð62Þ
Since the topology (or connectivity) of a mesh is constant for all time, there is a one to one correspondence
between mesh entities such as edges and faces at the old, intermediate and new locations. This allows us to
define an intermediate mesh with unique edges and faces, topologically identical to the old and new faces.
These intermediate quantities differ geometrically from their old and new counterparts by virtue of the nodal
positions~xmid. A schematic representation of this is shown in Fig. 4.

Now suppose we have calculated the magnetic flux density ~B in a Lagrangian time step via the proposed
method of (48). Recall that ~B is a 2-form and is approximated by 2-form basis functions according to the
expansion
~Bold �
X6

i¼1

bold
i
~W 2;old

i ð63Þ
Schematic diagram depicting the relationship between magnetic flux through two arbitrary faces and the corresponding time rate
nge of magnetic flux.



Fig. 4. Schematic diagram depicting a simple two element mesh with one face displaced. Topologically speaking, the old and new meshes
are identical. They differ geometrically by the location of the nodes in space. The voltage update circuit is depicted in dashed-green and
corresponds to a set of four edges, determined by the four intermediate nodes, which forms the boundary of an intermediate face.
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The degrees-of-freedom bold
i in this expansion carry the units of magnetic flux; this implies that we know the

magnetic flux through every face in the Lagrangian (or old) mesh. Our goal is to compute new values of the
magnetic flux bnew

i which will allow us to represent the magnetic flux density on the new mesh as
~Bnew �
X6

i¼1

bnew
i
~W 2;new

i ð64Þ
where ~W 2;new
i denote the basis functions for the new mesh (which are known once the locations of the new mesh

nodes are computed).
Using (60) as a starting point, we can compute the flux through a given face in the new mesh by
bnew
i ¼ bold

i þ Dbi ð65Þ

The flux change Dbi we are adding to each face in the old mesh is computed by numerically integrating the
voltage along the closed circuit path C, defined by four intermediate edges, which in turn are defined by
the four intermediate nodes~xmid associated with each face. Specifically, we can compute the flux change as
Dbi ¼ �
X4

j¼1

~xmid
jþ1 �~xmid

j

� �
�
ð~uj �~Bj~x¼~xmid

j
Þ þ ð~ujþi �~Bj~x¼~xmid

jþ1
Þ

2

0@ 1A ð66Þ
where the index j is cyclic (modulo 4). A detailed schematic representation of this is shown in Fig. 5. Each term
in the sum of (66) is a line integral of the voltage along one of the intermediate edges. This integral is computed
with the trapezoid rule. A critical point is that this computation requires evaluation of the magnetic flux den-
sity ~B at the intermediate nodes; since the H(Div) representation of ~B is discontinuous at nodes, some inter-
polation may be necessary if ~xmid does not lie entirely within an old element, this is discussed in the next
section.

The flux update of (66) relies on defining a circulation around the four intermediate edges. The direction of
the circulation will determine the sign of Db. Either of both directions can be used; however, it is imperative
that the choice is made consistently in order to compute bnew

i for each face. On a general unstructured grid, it
can become difficult to enforce such a rule, especially if one has no control over the source of the mesh topol-
ogy. As such, a more robust (and ultimately more revealing) method for updating the fluxes can be obtained
by considering the rectangular topological derivative matrix K12 of (43) which is a sparse rectangular matrix
representing an incidence map between edges and faces of a mesh. The first step is to introduce an edge-based
array e 0 representing the edge-based flux contributions defined by a line integral along that edge. For every
edge in the mesh, we have
e0j ¼ ~xmid
b �~xmid

a

� �
�
ð~ua �~Bj~x¼~xmid

a
Þ þ ð~ub �~Bj~x¼~xmid

b
Þ

2

 !
ð67Þ



Fig. 5. Schematic diagram detailing the process of computing the update voltage along the closed circuit C defined by four intermediate
edges. Given the values of ~u�~B at each intermediate node, a voltage contribution from each intermediate edge can be computed. The
appropriately signed sum of each edge contribution is the flux change for the face.
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where the generic integers a and b denote the unique integer IDs of the intermediate mesh nodes associated
with edge j such that a < b. Therefore, the direction of the line integral is uniquely defined according to a glo-
bal standard like that originally proposed in [32] (i.e. the line integral path is always from the node with low
integer ID to the node with high integer ID). We can now write the flux update in terms of global mesh arrays
as
bnew ¼ bold � K12e0 ð68Þ

Written in this form, it is clear that the flux update method will preserve the solenoidal nature of the magnetic
field. Taking the discrete divergence of (68) yields
K23bnew ¼ K23bold þ K23ðK12e0Þ ¼ 0 ð69Þ

Therefore, the divergence-free constraint is satisfied to machine precision for every mesh relaxation step.
Compare the flux update of (68) to the discrete Faraday’s law of (48).

5.3. Patch recovery process for nodal magnetic field representation

In order to compute the edge-based voltage contributions of (67), we need to evaluate the ~B field at the
points ~xmid. By virtue of the continuous remap approximation, the points ~xmid are guaranteed to lie inside
(or possibly on the side of) an upwind element of the old (or Lagrangian) mesh. An example of this is depicted
in Fig. 6.

Once the upwind elements are known for each intermediate node, we can use a finite element representation
to evaluate ~B inside of the upwind element at the location of the intermediate node~xmid. However, we cannot
use the face representation of (35) since, by construction, this representation is tangentially discontinuous
across element boundaries. Instead, we perform a type of patch recovery to obtain a fully continuous (or
smooth) representation of ~B which we will denote as ~Bavg. We define the smooth representation as
~Bavg ¼
X8

i¼1

X3

j¼1

bavg
i;j
~V i;j ð70Þ
This representation has 24 degrees-of-freedom, corresponding to three vector components located at each of
the 8 element nodes, and is fully continuous at element boundaries. This nodal vector field representation is
equivalent to the tri-linear interpolation commonly used for FEM discretization of fluid velocities. The vector



Fig. 6. Schematic diagram depicting the upwind locations of the intermediate mesh nodes~xmid
i ¼~xold

i þ 1
2
~ui. In this example,~xmid

1 and~xmid
2

lie in element 2 of the old mesh while~xmid
3 and~xmid

4 lie in element 3 of the old mesh
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valued basis functions ~V i;j can be viewed as three sets of 0-form (or scalar nodal) basis functions, one for each
component of the vector field.

There are several options for computing the degrees-of-freedom bavg
i;j for this representation. The simplest

and most efficient method is to first compute a cell centered value of the magnetic field for every element
in the mesh using the face based representation of (35), then to apportion a volume weighted average of this
value to each node. This is a cumulative process, any given node will receive a contribution from every element
it is connected to. This cumulative nodal value is then divided by a ‘‘nodal volume.’’ Alternatively, it is pos-
sible to employ a local polynomial patch recovery process, or a global least squares process. But these alter-
native approaches are expensive and are not evaluated here.

5.4. Algebraic flux correction for magnetic shocks

The transport method of Section 5.2 is second order accurate and will therefore exhibit non-monotonic
solution behavior (aka spurious oscillations, ‘‘ringing’’, or overshoots and undershoots) for solutions with dis-
continuities or shock fronts. We must impose a form of limiting that will suppress the non-monotonic solution
behavior. Limiting schemes for the scalar advection equation are prevalent and well understood as a result of
many years of research in the computational fluid dynamics (CFD) community [33]. Nevertheless, the design
of genuinely multidimensional schemes for finite element discretizations on unstructured meshes has proved to
be a particularly challenging task [21]. Here, we derive a limiting procedure that is based upon our topological
curl operator K12, and hence is inherently three-dimensional and unstructured. Furthermore, to our knowl-
edge there is no published method for limiting the vector valued magnetic advection equation on a general
unstructured grid.

The limiting procedure can be interpreted as reducing a high order numerical method to first order accuracy
in the vicinity of a sharp discontinuity while maintaining the high order accuracy in the remaining regions
where the solution is smooth. This requires a numerical procedure for detecting a shock (i.e. a ‘‘smoothness
sensor’’) and a procedure for limiting (or reducing the order of) the advection update method by the proper
amount to prevent spurious overshoots and undershoots. The theoretical foundations of this process were
originally developed for 1D finite difference solutions to scalar conservation laws [34,35], where the notion
of a Total Variation Diminishing (TVD) method was introduced in order to guarantee a monotonic solution.
As pointed out in [21], the generalization of the TVD criterion to finite element discretizations on 3D
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unstructured grids is the so-called local extremum diminishing (LED) criterion [36]. The LED criterion is an
algebraic statement which enforces the rule that local solution maxima cannot increase (thereby preventing
spurious overshoots) and local minima cannot decrease (thereby preventing spurious undershoots). In this sec-
tion, we follow the algebraic approach of [21] of modifying the discrete magnetic transport method so as to
render the discretization local extremum diminishing.

Suppose we apply a limiting (or correction) term to the local face flux update equation (65) of the form
Fig. 7.
top fo
were to
the sh
correc
blim
i ¼ bold

i þ hiDbi
where the correction term hi has been introduced for each face flux. When hi = 1, no limiting is performed and
the flux update method is second order accurate. Now suppose we had a shock detector or smoothness sensor
which could tell us whether or not the resulting face flux would result in a spurious overshoot or undershoot in
the computation of ~B. Our goal then is to compute the value of hi which would correct the flux update and
prevent this from happening. However, we are immediately confronted with a problem. We cannot simply
change the value of each face based flux independently, as this will clearly destroy the discrete divergence-free
property which we have worked so hard to obtain.

The key to overcoming this obstacle is to limit the edge-based voltages rather than the face based fluxes. We
therefore propose a divergence preserving limited update method of the form
blim ¼ bold � K12ðhe0Þ ð71Þ

Since we are limiting (or correcting) independent edge-based voltages, the update of (71) is guaranteed to be
divergence preserving to machine precision. The general rule of thumb is that the edge-based voltages which
border the shock front are the ones responsible for the spurious overshoots/undershoots in the magnetic flux
and must therefore be limited. However, in order to determine which edges are on the shock front and how
much they need to be limited by, we need information from the face based fluxes, since we are ultimately con-
cerned with obtaining a limited value of the discrete magnetic flux density~B which is a face based quantity. An
overview of this process is presented in Fig. 7.

The details of the process can be broken down into four steps:

� Step 1 – Compute the unlimited flux change via (68)
� Step 2 – Compute the face limited flux change via Algorithm 1
Consider a patch of element faces in the presence of a discontinuous magnetic field oriented out of the page. In this example, the
ur corner faces have unit magnetic flux (1’s) while the remaining faces have no flux (0’s). If the nodes bordering the discontinuity

move in the direction indicated, the unlimited flux update method would generate spurious overshoots in the three faces bordering
ock front (indicated with circles). These are the faces that require flux correction. To compute the divergence preserving flux
tion, we limit the voltages on the edges which border the shock front.



Fig. 8. Topological data structure used to detect discontinuities in face based fluxes. Note that the top and bottom faces are not used.
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� Step 3 – Loop over limited faces to determine the edges which lie along the shock front and compute the
edge limiting factor via Algorithm 2
� Step 4 – Compute the edge limited flux change by taking the limited curl via (71)

We begin by computing the unlimited flux change via the algebraic constrained transport update of (68).
Next, we compute a face limited flux change Db by searching the topological data structure of Fig. 8 using
the method outlined in Algorithm 1. In other words, we check to see if the unlimited flux change will result
in an overshoot or undershoot by searching all of the connected faces; if so, then we simply compute the lim-
ited value to be the maximum/minimum connected value of the data structure. The resulting limited flux
change Db could be used in the algebraic constrained transport update of (68) and it would result in a properly
limited ~B field; however the resulting discrete ~B field would no longer be divergence free. Therefore, the next
step is to determine which edges in the limited faces are responsible for the over/undershoots. In logical u–v (or
reference) space, we can decompose a face into two sets of edges: the two edges parallel to the local u-direction
and the two edges parallel to the local v-direction. Given a face that lies on the border of the shock front, our
goal is to compute which edge in each of these two sets requires limiting. This is accomplished by computing
the ‘‘edge curl’’ using the topological data structure of Fig. 9 according to the method outlined in Algorithm 2.
Edges which border the shock front will have a large ‘‘edge curl’’ relative to the opposite edge in logical space.
Fig. 9. Topological data structure used to detect discontinuities in edge-based voltages.
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For example, suppose we have identified a face that requires limiting via the method outlined in Algorithm
1. Furthermore, suppose that the 4 edges in this face are such that edges 1 and 3 are parallel to the local
u-direction and edges 2 and 4 are parallel to the local v-direction. We now compute the edge curl for each
of the 4 local edges and compare relative magnitudes between pairs 1,3 and 2,4. By doing so, we determine
which, if any, of the 4 edges lies on the shock front. Suppose we have determined that local edge 3 (from the u
set) and local edge 4 (from the v set) both have a large edge curl with respect to their counterparts. The unlim-
ited flux change for this face is given by
Db ¼ �ðK1e1 þ K2e2 þ K3e3 þ K4e4Þ

We now introduce the edge limiting factor h into the equation for the face limited flux change Db as computed
by the method outlined in Algorithm 1
Db ¼ �ðK1e1 þ K2e2 þ hðK3e3 þ K4e4ÞÞ

Solving for h, we get
h ¼ Db� Db
K3e3 þ K4e4

þ 1
We apply the same limiting factor h to each of the two global edges corresponding to the local edges 3 and 4.
This process is performed for every limited face until the global edge-based array h is formed. Once this value
has been computed for each limited edge, we can then compute the edge limited flux change via (71). The de-
tails for identifying the edges in a face which require limiting are outlined in Algorithm 2. Note that all of the
information required for the data structures depicted in Figs. 8 and 9 is encoded in the topological derivative
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matrix K12 of (43), since this purely topological quantity is simply an incidence map which designates the
connectivity between edges and faces.
6. Numerical verification experiments

In this section we present a series of numerical experiments which are designed to verify the individual com-
ponents of our operator-split discretization of MHD. For the first two examples of Section 6.1 and 6.2, we
need to solve the linear system of (47) where the right hand side consists of an edge-based finite element mass
and stiffness matrix. For these examples we use a simple diagonally scaled pre-conditioned conjugate gradient
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(PCG) method which is sufficient for most applications. However we should point out that more advanced and
efficient methods for solving linear systems arising from mixed finite element discretizations using H(Curl) and
H(Div) basis functions exist, such as those described in [23,37].
6.1. Electromagnetic diffusion in a coaxial cylinder at rest

The purpose of this computational experiment is to verify the discrete electromagnetic diffusion operator Lr

of our operator splitting of the induction equation. Since we are ignoring the advection operator, we choose a
simple test problem in which the conducting materials are at rest (i.e.~v0 ¼ 0). Furthermore, this test is designed
to validate our approach for treating electromagnetic diffusion in highly heterogeneous conducting regions
(i.e. regions consisting of conductors immersed in insulating vacuum like regions) using only a voltage source
boundary condition. This test problem was developed in the spirit of the first test problem from [23]; however
in this case we drive the problem with a voltage source boundary condition and we have an analytic solution to
compare with.

In this computational experiment we apply a 1 V potential difference across the ends of a conducting coax-
ial cylinder and compute the steady state conduction current and magnetic field via the mixed FEM formu-
lation of Section 3.3. The electrical resistance of the coaxial cylinder is given by
R ¼ l
rA

ð72Þ
where l is the length of the coaxial cylinder and A is the cross sectional surface area of the coaxial cylinder
determined by its inner radius Ri and outer radius Ro. The potential difference across the coaxial cylinder will
result in a steady state conduction current density~J ¼ r~r/ where / is the scalar potential inside the conduc-
tor. We fix the geometry and conductivity r of the problem such that the total resistance is 1 X and the total
conduction current I = 1 A. To facilitate the magnetic fields in the vacuum around the cylinder, the compu-
tational domain is a cylinder of radius Rb = 2Ro and length l oriented along the ẑ direction, divided into two
material regions as shown in Fig. 10. The cylinder is assigned a conductivity value rc = 2 S/m while the vac-
uum region is assigned a very small conductivity value rvac = 10�7rc. The computational mesh consists of
5760 hexahedral elements.

The steady state magnetic field will have azimuthal symmetry which can be determined analytically from
Ampere’s law
Fig. 10. Computational domain for conducting coaxial cylinder immersed in a vacuum like material.
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BhðrÞ ¼
lIencðrÞ

2pr
ð73Þ

IencðrÞ ¼
0 r 6 Ri

I
r2�R2

i

R2
o�R2

i

Ri 6 r < Ro

I Ro < r

8><>: ð74Þ
For the scalar potential solve of (46), we apply the inhomogeneous Dirichlet boundary condition / = + 1 at
the surface z = 0 and / = 0 at the surface z = l. For the discrete Ampere solve of (47), we apply the homoge-
neous Dirichlet boundary condition n̂�~Eind ¼ 0 over the entire surface of the problem domain. For both
solves, a simple diagonally scaled PCG method with a residual error tolerance of 10�10 is used. We run the
problem for a total time tfin = 3s where s is one diffusion time constant such that s = rl(Ro � Ri)

2, this will
ensure that the fields reach steady state. We use a fixed time step Dt ¼ tfin

100
. In Fig. 11 we plot the scalar poten-

tial as well as the steady state conduction current density ~J ¼ r~E and magnetic field ~B. In Fig. 12 we plot the
analytic solution for the azimuthal magnetic field as a function of radius and compare it with our mixed FEM
solution. The total current can be computed by numerically integrating the z-component of the current density
at any plane normal to the z-axis. In Fig. 13 we plot the total computed current as a function of time and verify
that it reaches its correct steady state value of I = 1 A.
Fig. 11. Computed steady state electromagnetic fields for the conducting coaxial cylinder problem.

Fig. 12. Azimuthal magnetic field as a function of radius at the final time step.



Fig. 13. Total computed current as a function of time. Note that the total current reached the correct steady state value.
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6.2. MHD wave propagation in an ideal gas

In this computational experiment we verify the coupling of the electromagnetic force to the equations of
Lagrangian motion, which in turn will verify our Lagrangian treatment of the advection operator Lv. Our goal
for this experiment is to launch waves and verify their computed velocity. A simple way to do this is to fix the
velocity of the wave to some desired value, then to scale the domain size and total time for the problem such
that the wave front just reaches the end of the computational domain at time t = tfin. We consider the case of a
rectangular ‘‘slab’’ mesh (i.e. one element thick in the z-direction) of dimension 2Lx by 2Ly centered at the
origin x = y = 0 representing an ideal gas. We use a simple gamma-law model for the EOS of the gas given by
P ¼ ðc� 1Þ q
q0

E ð75Þ
For an ideal monatomic gas, c ¼ 5
3
.

For reference, we first consider the case of a pure sound (or acoustic) wave. This is a purely hydrodynamic
calculation and does not involve any electromagnetic properties. The sound speed is determined by the
relation
vs ¼
ffiffiffiffiffiffi
cP
q

s
ð76Þ
We choose a sound speed vs = 0.5 m/s and an initial density q = 1.0. We excite the wave by applying a time
dependent velocity perturbation to a face in the mesh that is normal the x-axis and located at the center of the
mesh. Specifically, we have
~vper ¼ A cosðxtÞx̂ ð77Þ

which gives us a displacement perturbation equal to
~xper ¼
A
x

sinðxtÞx̂ ð78Þ
We set the velocity perturbation amplitude to be very small, specifically A = 10�2. This keeps the relative
change in pressure ~rP=P small enough to eliminate the need for an artificial viscosity (i.e. there are no shocks
in the problem). For this experiment, the computational domain has dimensions Lx = Ly = vstfin. We set the
total time to be tfin = 1 s. This implies that the perturbation velocity (and displacement) will oscillate for two
full periods during the simulation. In this example, the velocity perturbation should propagate outward from
the center of the mesh via compression and rarefaction waves traveling in the x-direction at the sound speed vs

as shown in Fig. 14.
Now we consider the case of an MHD wave. We begin by applying an initial magnetic field to the problem

domain oriented in the y-direction such that ~B ¼ Byŷ. For this case, we add an electrical conductivity to the
ideal gas. We set the conductivity very high (r = 108 S/m) so that the conducting gas effectively has no



Fig. 14. Pseudocolor plot of velocity wave at time t = tfin for the case of a pure sound (or acoustic) wave. Since the initial velocity
perturbation is oriented in the x-direction and the ideal gas has no strength, the velocity perturbation travels in the x-direction via
compression waves at the sound speed vs. The computational domain is a single element thick ‘‘slab’’ of dimension 2vstfin by 2vstfin.

Fig. 15. Pseudocolor plot of velocity wave at time t = tfin for the case of an MHD wave, consisting of a fast (or magnetosonic) wave and a
shear (or Alfven) wave. This is accomplished by adding a~B field oriented in the y-direction to the problem. The velocity perturbation now
travels in the x-direction via compression waves at the fast (or magnetosonic) speed vf and in the y-direction via shear waves at the Alfven
speed vA. The computational domain is a single element thick rectangular ‘‘slab’’ of dimension 2vftfin by 2vAtfin.
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electrical resistance. This implies that our MHD diffusion equations are effectively loss-less for the time scales
we are considering, meaning we are in the ideal MHD limit with the frozen-in-flux condition. We apply the
same time dependent velocity perturbation in the x-direction to a face in the middle of the mesh. Because
the magnetic field is ‘‘frozen in’’ to the material, it will be dragged along with the material as it moves. How-
ever, the~J �~B restoring force will work to resist this motion and effectively add strength to the gas in the from
of the Maxwell stress tensor. We now expect to see two types of waves, a fast (or magnetosonic) compression
wave traveling in the x-direction at the speed vf and a shear Alfven wave traveling in the y-direction at the
speed vA as shown in Fig. 15. The shear Alfven wave velocity is given by
vA ¼
j~Bjffiffiffi

q
p ð79Þ
while the fast (or magnetosonic) wave velocity is given by
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vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

s þ v2
A

q
ð80Þ
We fix the Alfven speed to be vA = 1.0 m/s (which subsequently determines By) and keep the sound speed fixed
at vs = 0.5 m/s as before; this implies the magnetosonic speed will be vf ¼

ffiffi
5
p

2
m=s. For the linear solve of (47)

we apply the homogeneous boundary condition n̂� 1
l
~B ¼ 0 to the x and y boundary planes (i.e. we are enforc-

ing the constraint~v�~B ¼ 0 on the perimeter of the mesh). Since this is a three-dimensional problem (i.e. it has
finite depth in the z-direction), we apply the homogeneous boundary condition n̂�~E ¼ 0 on the top and
bottom of the mesh defined by the planes z = zmin and z = zmax. The linear solve is performed using a
diagonally scaled PCG method with a residual error tolerance of 10�8.

In Fig. 16 we plot the magnetic field vectors and magnitude along with the computational mesh using an
exaggerated displacement (scale factor of 300) to emphasize the characteristics of the Lagrangian calculation.
Note how the mesh lines move with the magnetic field. In addition, note how the magnetic field lines compress
and expand in the y-direction and undulate due to shearing motion in the x-direction. In Fig. 17 we track the
velocity wave amplitude to its first peak value for six different spatial locations along the Alfven wave axis (the
y-axis). Note how the velocity wave amplitude decays at a rate proportional to 1ffiffi

r
p , in direct agreement with the

expected results for wave propagation in two dimensions (recall the Green’s function for 2D wave propagation
is proportional to 1ffiffi

r
p ). The peak to peak separation of the velocity wave amplitude at different points in time

can be used to measure the instantaneous numerical velocity of the wave as shown in Fig. 18. Note how the
numerical Alfven wave travels at a non-constant rate which is slower than the expected constant rate, indicat-
ing the effects of numerical dispersion.

Finally, we perform the Lagrangian MHD wave calculation on a very unstructured mesh to test the robustness
of the numerical method. In Fig. 19 we compare the final results at time t = tfin for both mesh types, indicating
that the proposed method can support MHD waves on highly unstructured grids with arbitrary connectivity.

6.3. Eulerian advection of smooth fields

The purpose of this computational experiment is to demonstrate the second order accuracy of the algebraic
constrained transport method of (68), and therefore verify our Eulerian treatment of the advection operator
Lv. We consider the case of a ‘‘smooth’’ (i.e. infinitely differentiable) magnetic field initially projected onto a
. MHD wave problem with exaggerated displacement (scale factor of 300) to emphasize the features of the Lagrangian calculation.
ow the mesh lines are parallel to the magnetic fields lines. The pseudocolor plot represents the magnitude of the magnetic field, j~Bj.
e can more clearly see the components of the Maxwell stress tensor in action. The pressure terms contribute to the peaks and nulls

magnetic field magnitude along the y-direction due to compression waves while the deviatoric components give rise to the shearing
of the vector field along the x-direction.



Fig. 17. Velocity wave amplitude as a function of time (up to first peak value) for six different spatial locations along the Alfven wave axis
(y-direction) and a 1ffiffi

r
p fit to the amplitude.

Fig. 18. Location of first peak value in velocity space for six different spatial locations, providing a measure of the instantaneous Alfven
velocity as well as numerical dispersion.

Fig. 19. Comparison of Lagrangian MHD wave results at time t = tfin for the case of a structured mesh (left) and a very unstructured mesh
(right).
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significantly distorted mesh. We then let the mesh relax to equilibrium while applying the constrained trans-
port update of (68) at each mesh relaxation step to update the magnetic flux values. A sequence of images
depicting this process is shown in Fig. 20. We consider a solenoidal ~B field that can be expressed as the curl



Fig. 20. A solenoidal magnetic field~B is projected onto an initially distorted mesh (left). The mesh is then relaxed to equilibrium (right) via
a sequence of steps (middle) while the magnetic flux is updated using the algebraic constrained transport method.
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of a vector potential which represents a vector valued ‘‘Gaussian Hill’’ oriented in the ẑ direction (i.e. out of
the page)
Fig. 21
elemen
error v
~A ¼ expð�aðx2 þ y2ÞÞẑ
~B ¼ ~r�~A
The corresponding ~B field will have non-zero x̂ and ŷ components. We perform the calculation on a sequence
of refined meshes and at each mesh relaxation step, the L2 finite element error is computed for each element, as
shown in Fig. 21. Note that the convergence of the method indicates second order accuracy.

In addition, we compute the numerical energy stored in the magnetic fields at each mesh relaxation step as
emag ¼ bTM2ðl�1Þb ð81Þ

In Fig. 22 we plot the measured magnetic energy at each mesh relaxation cycle using three different limiting
methods: no flux limiting (i.e. pure algebraic CT), face based flux limiting (i.e. non-divergence preserving) and
edge-based flux limiting (i.e. divergence preserving). Strict conservation of energy is not explicitly built into the
method, and Fig. 22 shows that some energy is lost during advection, even when no limiting is applied. The
amount of lost energy is a function of the mesh, and as the mesh is refined the amount of lost energy decreases
with second order convergence. The fact that our advection method conserves magnetic flux exactly and con-
serves magnetic energy approximately is consistent with the hydrodynamics advection in ALE3D which con-
serves momentum exactly and conserves energy approximately. It is also consistent with the interpretation of
flux limiting as an artificial local diffusion. In Fig. 23 we plot the total magnetic charge at each mesh relaxation
cycle using the same three limiting methods. As expected, the unlimited and the edge limited algebraic CT
method preserves the divergence of the ~B-field to machine precision, independent of the mesh distortion. Note
also how the face limited approach destroys the ~r �~B ¼ 0 property as expected.
. Convergence analysis of finite element error for the magnetic advection equation using a coarse (144 element), medium (576
t) and fine (2304 element) hexahedral mesh. The maximum L2 error vs. mesh relaxation cycle is plotted left while the maximum L2
s. element size at the final cycle is plotted right on a log scale, indicating the convergence rate is second order.



Fig. 23. Total magnetic charge at each mesh relaxation step using three different limiting methods.

Fig. 22. Normalized magnetic energy at each mesh relaxation step using three different limiting methods.
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6.4. Eulerian advection of discontinuous fields

In these computational experiments we verify the algebraic flux correction method by performing mesh
relaxation over discontinuous fields and verifying that the LED criterion is satisfied. We begin with a classic
one-dimensional advection problem adapted for our ALE treatment of magnetic flux. The computational
domain and initial fields are depicted in Fig. 24. We project onto the region two different initial vector fields.
The first is a smooth Gaussian hill for reference purposes while the second is a unit step function. We apply an
initial mesh density gradient to the computational domain such that one end has a high concentration mesh
elements while the other end has a low concentration of mesh elements. When mesh relaxation is applied, the
mesh will flow from the high density region to the low density region with the non-uniform mesh velocity~vm

until equilibrium is reached. This is equivalent to advecting the initial data in the opposite direction �~vm. The
results of this calculation with and without algebraic flux correction are shown in Fig. 25. Note how spurious
oscillations occurs at the leading and trailing edge of the shock front when no flux correction is applied. These



results are in direct agreement with numerical advection of a square pulse using the textbook second order
accurate Lax–Wendroff method. Note how the flux corrected result has succeeded in suppressing the oscilla-
tions by directly enforcing the LED criterion. Furthermore, note that with and without flux correction, the
results for the smooth function are in good agreement with the initial data. This indicates that the proposed
algebraic flux correction method does not introduce excess diffusion for smooth fields.

In Fig. 26 we perform a similar experiment, except this time the computational domain is an unstructured
cylinder mesh with a radial step function. Again, we apply an initial mesh density gradient to the computa-
tional domain. When mesh relaxation is applied, the mesh will flow radially inward/outward from high density
region to the low density region with the non-uniform mesh velocity ~vm until equilibrium is reached. The
results of this calculation with and without algebraic flux correction are shown in Fig. 27. For the case of



Fig. 26. Computational domain and initial field data for mesh relaxation over discontinuous vector field on an unstructured cylindrical
mesh. In both cases, the mesh is given an initial density gradient. In the first case (left) the mesh will flow radially outward while in the
second case (right) the mesh will flow radially inward.

Fig. 27. Computational results for algebraic constrained transport of magnetic flux on an unstructured mesh with and without algebraic
flux correction for two different mesh velocity directions.
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meaning that at every time step, a Lagrange step is performed followed by an advective remap to the original
unperturbed mesh. This is challenging test of the advection algorithm, as it is applied over and over again. In
Fig. 28 we compare values for the amplitude of the magnetosonic wave at time t = tfin obtained in a pure
Fig. 28. Comparison of magnetosonic wave amplitude along the x-axis at time t = tfin for both Lagrangian and pure Eulerian calculations.
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Eulerian fashion against the original Lagrangian results of Section 6.2. Note how the two are in excellent
agreement.
7. Magnetic flux compression generation

As mentioned in the introduction, the primary motivation for this simulation capability is understanding
the behavior of pulse power devices that involve gross deformation of solid metal. An Explosive Magnetic
Flux Compression Generator (EMFCG) is an example of a device for which the electromagnetics, solid
mechanics, and heat transfer are tightly coupled. The metal starts out solid, but may transition to liquid
or even a gas/plasma state. In this section we present simulation results for the EMFCG proposed and
tested in [38], the geometry is shown in Fig. 29. The generator is connected to a capacitor bank that pro-
vides the seed current, and to a detonation system for the high explosive. The generator is essentially a
current amplifier, the input current is amplified in magnitude and compressed in time. The device operates
as follows: at t = 0 the capacitor bank is switched, current flows into the coaxial device, and a large B-field
is established between the conductors. A few microseconds later the high explosive is detonated and the
thin copper outer conductor (the armature) is compressed. At some point the armature contacts the inner
conductor (the stator) and at this point the magnetic flux is trapped between the conductors. As the com-
pression continues, due to Lenz’s law the current in the armature and stator and the load is amplified (in
this simulation the load, connecting armature to stator, is a simple copper plate). The geometry is designed
such that the device ‘‘zippers shut’’ generating a current pulse with a fast dI/dt. Snapshots of the geometry,
current density, magnetic field, and electric field are shown in Figs. 30 and 31. Note that Fig. 30 corre-
sponds to the ‘‘crowbar time’’, the time at which the armature contacts the stator and the magnetic flux
is trapped.

One issue with EMFCG’s is that the inductive electric field can become large, and if the field exceeds some
critical value breakdown will occur and the device will be short circuited. This device developed a peak electric
field strength of 105 V/cm, hence it is possible that an arc forms between the armature and stator. This peak
field occurred late in time (after 80 ms) and hence will not significantly impact the current gain. Interestingly,
the copper armature exceeds its melting point at approximately the same location and time.
Fig. 29. Geometry of the Shearer coaxial explosive magnetic flux compression generator. This is 1/4 of the geometry. From inside to
outside, the materials consist of copper, air, copper, Lucite, high explosive, and stainless steel.



Fig. 31. Shearer generator results at t = 75 ls. Snapshots of the materials (top-left), current density (top-right), magnetic flux density
(bottom-left) and electric field (bottom-right).

Fig. 30. Shearer generator results at t = 61 ls. Snapshots of the materials (top-left), current density (top-right), magnetic flux density
(bottom-left) and electric field (bottom-right).

Fig. 32. Computed total current vs. time, these results agree with the 20· gain reported in [38].
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Fig. 33. Computed magnetic flux vs. time along with flux in the vacuum region and conducting region.

568 R.N. Rieben et al. / Journal of Computational Physics 226 (2007) 534–570
The computed output current is shown in Fig. 32, this agrees with the approximately 20· gain described in
the original experiments [38]. This is less than predicted by simple circuit models because of lost flux in the
conductors due to electromagnetic diffusion. In Fig. 33 we plot the magnetic flux vs. time for the entire prob-
lem. Note that at exactly 60ls (roughly equal to the crowbar time), we switch of the external voltage source
implying that we have now deposited a finite amount of electromagnetic energy into the generator. From this
point on, total magnetic flux should be conserved and as evidenced by Fig. 33, our numerical method is doing
a good job of conserving the total magnetic flux in the problem. In Fig. 33, we also plot the components of the
flux in the conducting region and in the vacuum region enclosed by the conductors. If the generator were loss-
less, then all of the flux would remain trapped in the vacuum region and the total gain would be significantly
greater. However, due to finite electrical resistivity, the flux in the vacuum region quickly diffuses into the con-
ducting region, therefore degrading the overall performance of the generator.

Clearly, this simulation could have been performed using a 2D body-of-revolution code, and in fact we
have compared results to the established 2D CALE code [9,10]. The results were virtually identical. The
advantage of the full 3D simulation is that we can investigate 3D perturbations to the coaxial device, and
we can also investigate EMFCG geometries such as flat plate and helical devices.

8. Conclusions

We have developed an arbitrary Lagrangian–Eulerian (ALE) discretization of resistive MHD on 3D
unstructured grids. The method was formulated in an operator-split manner with three distinct phases. We
have argued that the operator splitting of the magnetic induction equation is particularly simple in the mate-
rial (or Lagrangian) frame, and therefore a mixed finite element discretization using H(Curl) and H(Div) basis
functions is naturally suited for such a problem. This is accomplished by constructing rectangular derivative
matrices which represent the curl operator defined with respect to the material frame. We have employed the
methodology of the finite element library FEMSTER to perform this discretization as it was designed specif-
ically for these types of representations. Furthermore, we have developed a mixed finite element formulation
of the induction equation that has a 2-form magnetic flux as its only state variable (making it amenable to
advection), is second order accurate in time and supports explicit voltage source boundary conditions via
an additional elliptic solve. For problems that require mesh relaxation and the subsequent remapping of state
variables to the new mesh, via Eulerian advection, we have developed an algebraic constrained transport
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method which makes use of the rectangular topological derivative matrix. As such, the method is valid for 3D
unstructured grids with arbitrary mesh velocity and is second order accurate for smooth magnetic fields. For
discontinuous magnetic fields (e.g. MHD shocks), we have developed an algebraic flux correction method
which limits an intermediate edge-based voltage in a manner that enforces a local extremum diminishing prop-
erty on the magnetic flux. This algebraic flux correction is an intermediate step in the algebraic constrained
transport algorithm and hence ~r �~B ¼ 0 is still satisfied exactly. We have presented a series of numerical ver-
ification experiments which demonstrate the properties and accuracy of the proposed method.
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